Applications of Elliptic Curves in Cryptography

William King
What do these have in common?

Gmail
by Google
PS3
PlayStation 3
Wii
BlackBerry
What Are Elliptic Curves?

Equations of the form:

\[y^2 = x^3 + ax + b \]

such that:

\[4a^3 + 27b^2 \neq 0 \]
$4a^3 + 27b^2 \neq 0$

$y^2 = (x - 2)^2(x - 1)$

$y^2 = (x - 2)^3$
Points on Elliptic Curves

The set of all \((x,y)\) such that:

\[y^2 = x^3 + ax + b \]

For example: \((2,5)\)

\[5^2 = 2^3 + 5(2) + 7 \]
Adding Points of Elliptic Curves!

$y^2 = x^3 + 5x + 7$

$P + Q$

$-(P+Q)$

$2P$

$-(2P)$
$y^2 = x^3 + 5x + 7$

Where does the line intersect the curve?
The Point at Infinity

\[P + (-P) = \infty \]

We define \(\infty \), the point at infinity, as the point where vertical lines meet.

We include the point at infinity with elliptic curves to achieve algebraic closure.
Point Addition: Algebraic Interpretation

Four Cases:

1. For distinct points \(P=(x_1, y_1), Q=(x_2, y_2)\), such that \(Q\) is not the elliptic inverse of \(P\), then \(P+Q=(r, s)\) such that

 \[r = ((y_2 - y_1)(x_2 - x_1)^{-1})^2 - x_1 - x_2\]
 \[s = ((y_2 - y_1)(x_2 - x_1)^{-1})(x_1 - r) - y_1\]
2. For a point, $P=(x_1, y_1)$, then $2P = (r, s)$ such that
 - $r = ((3x_1^2 + a)(2y_1^{-1})^2 - 2x_1$
 - $s = ((3x_1^2 + a)(2y_1^{-1})(x_1 - r) - y_1$

3. For elliptic inverses P and $-P$, $P+(-P) = \infty$
 - This relationship also allows us to define
 - $P+\infty = P$

4. For ∞, we define $\infty+\infty=\infty$
Elliptic Curves Over Finite Fields

\[y^2 = x^3 + 5x + 7 \]

\[y^2 \equiv x^3 + 5x + 7 \pmod{23} \]
Point Addition on Elliptic Curves over Finite Fields

$P = (3, 7)$

$Q = (18, 15)$

$P + Q = (3, 16)$

$r = ((15 - 7)(18 - 3)^{-1})^2 - 3 - 18$

$= (8*(15)^{-1})^2 - 21 \pmod{23}$

$= 22485 \pmod{23}$

$= 3$

$s = ((15 - 7)(18 - 3)^{-1})(3 - 3) - 7$

$= (8*(15)^{-1})(0) - 7 \pmod{23}$

$= 0 - 7 \pmod{23}$

$= 16$
Point Addition on Elliptic Curves over Finite Fields

$P = (3, 7)$

$2P = (3, 7) + (3, 7) = (r, s)$

$r = ((3(3)^2 + 5)(2(7))^{-1})^2 - 2(3)$
$= ((3(9) + 5)(14)^{-1})^2 - 6 \pmod{23}$
$= ((9)(5))^2 + 17 \pmod{23}$
$= 501 \pmod{23}$
$= 18$

$s = ((3(3)^2 + 5)(2(7))^{-1})(3 - 18) - 7$
$= ((3(9) + 5)(14)^{-1})(8) + 16$
$= (9*5)(8) + 16 \pmod{23}$
$= 376 + 16 \pmod{23}$
$= 8$

$2P = (18, 8)$

$3P = (11, 17)$

$4P = (12, 22)$

$5P = (21, 9)$
The Discrete Logarithm Problem (DLP)

Given:
- a prime integer p
- a cyclic group $\mathbb{Z}_p = \{0, 1, 2, ..., p-1\}$
- a generator g, of \mathbb{Z}_p
- a non-zero element of \mathbb{Z}_p, a

This discrete logarithm d, of a to the base g is given by

$$a \equiv g^d \pmod{p}$$
Consider $p = 23$, then $\mathbb{Z}_{23} = \{0,1,2,\ldots,22\}$, and note that $<11> = \mathbb{Z}_{23}$

Solve $15 \equiv 11^d \pmod{23}$ for d

Answer: 19

\[
\text{mod(seq(11^x,x,0,22),23)} = \\
\{1,11,6,20,13,5,9,7,8,19,2,22,12,17,3,10,18,14,16,15,4,21,1\} \\
\{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22\}
\]
Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given:
- an elliptic curve: $y^2 = x^3 + ax + b$
- a prime, p
- a field, F_p
- points P, Q on the elliptic curve such that Q is some multiple of P

This discrete logarithm k, of Q to the base P is given by

$$Q = kP$$
Consider the elliptic curve $y^2 = x^3 + 9x + 17$ over F_{23}

What is the discrete logarithm of $Q=(4,5)$ to the base $P=(16,5)$? I.e., solve $(4,5) = k \cdot (16,5)$ for k.

Answer: 9

$1P=(16,5), \ 2P=(20,20), \ 3P=(14,14), \ 4P=(19,20), \ 5P=(13,10), \ 6P=(7,3), \ 7P=(8,7), \ 8P=(12,17), \ 9P=(4,5), \ ...$
Given $Q = kP$ and P, it's difficult to find k; how does this relate to public key cryptography?
Elliptic Curve Cryptography! (ECC)

- Applications:
 - Asymmetric (Public) Key Cryptography
 - Digital Signatures
 - Secure Key Generation
Elliptic Curve Cryptography
Broadcast Parameters

\((p, a, b, G, q) \)

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Elliptic Curve Digital Signature Algorithm (ECDSA)
Meet the Players

Alice Bob Eve
Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Key Agreement Protocol
Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Step 1

Alice randomly chooses an integer

\[k_A \in \{1,2,...,q-1\} \]

and keeps \(k_A \) secret.

Bob randomly chooses an integer

\[k_B \in \{1,2,...,q-1\} \]

and keeps \(k_B \) secret.
Step 2

Alice computes $A = k_A G$
and sends A to Bob.

Bob computes $B = k_B G$
and sends B to Alice.
Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Step 3

Alice computes $S_A = k_{AB}$

Bob computes $S_B = k_{BA}$
ECDH Proof

Alice and Bob agree upon the same key because

\[S_A = k_A B = k_A (k_B G) = (k_A k_B) G = (k_B k_A) G \]

\[= k_B (k_A G) = k_B A = S_B \]
Elliptic Curve Digital Signature Algorithm (ECDSA)

Digital Signatures
Elliptic Curve Digital Signature Algorithm (ECDSA)

Step 1

Alice chooses a secret and random integer i, and computes $A = iG$ and publishes A to all

Bob waits patiently!
Alice chooses another secret random integer $w \in \{1,2,\ldots,q-1\}$, and computes $Q = wG = (x_Q,y_Q)$.
Elliptic Curve Digital Signature Algorithm (ECDSA)

Step 3

Alice computes \(h = \text{hash}(M) \) and \(s \equiv w^{-1}(h+i \cdot x_Q) \pmod{q} \)

Alice sends \((M, Q, s)\) to Bob

Bob waits patiently!
Step 4

Bob computes \(h = \text{hash}(M) \) and
\[
\begin{align*}
 z_1 & \equiv s^{-1}(h) \pmod{q} \\
 z_2 & \equiv s^{-1}(x_Q) \pmod{q}
\end{align*}
\]
Elliptic Curve Digital Signature Algorithm (ECDSA)

Step 5

Bob computes \(B = z_1 G + z_2 A \)

Alice waits patiently!
Step 6

If $B = Q$, then signature is valid, else the signature is invalid.
ECDSA Proof

A bit more tricky, but...

Since $s \equiv w^{-1}(h + ix_Q)$

$$w \equiv s^{-1}(h + ix_Q) \equiv s^{-1}h + (s^{-1})ix_Q \equiv z_1 + z_2i \pmod{q}$$

then,

$$B = z_1G + z_2A = z_1G + z_2(iG) = (z_1 + z_2i)G = wG = Q$$

Since, the integers i, w could have only come from Alice, the signature is valid.
Attacks on Elliptic Curve Systems

Solving the Elliptic Curve Discrete Logarithm Problem!

Eve, the Eavesdropper
Deterministic

\((q)^{1/2}\) steps & storage
Baby Step, Giant Step Method

Alice sends her public key, $A = k_A G$ to Bob.

Bob sends his public key, $B = k_B G$ to Alice.

Eve intercepts Alice and Bob’s public keys A, B over the insecure channel.

(p, a, b, G, q)
Eve chooses an integer $i \geq (q)^{1/2}$ and computes and stores all points jG such that $1 \leq j \leq i$.

(p, a, b, G, q)

Alice computes $S_A = k_A B$

Bob computes $S_B = k_B A$
Baby Step, Giant Step Method

Alice and Bob have agreed on a shared key, $S_A = S_B$

Eve computes $A-(hi)G$ for consecutive integers $h=0,1,2,...,i-1$ until $A-(hi)G=jG$ for some integer h and some j from the previous list.

(p, a, b, G, q)
Alice and Bob have agreed on a shared key, $S_A=S_B$.

Eve has recovered Alice’s private key, $k_A \equiv j + hi \pmod{q}$.

Alice and Bob have agreed on a shared key, $S_A=S_B$.

(p, a, b, G, q)
Baby Step, Giant Step Method

Eve computes $S_A = k_A B$ and has arrived at the same shared secret key

(p, a, b, G, q)

Alice and Bob have agreed on a shared key, $S_A = S_B$
Baby Step, Giant Step Method

Why does this work?

When \(jG = A - (hi)G \)

\[
jG = A - (hi)G \Rightarrow jG + (hi)G = A - (hiG) + (hi)G
\]

\[
\Rightarrow (j + hi)G = A + \infty \Rightarrow (j + hi)G = A
\]

\[
\Rightarrow (j + hi)G = k_A G
\]

\[
\Rightarrow (j + hi) \equiv k_A
\]
Baby Step, Giant Step Method: Example

Alice sends $A=(14,17)=21(1,19)$ to Bob.

Bob sends his public key, $B=k_BG$ to Alice.

Eve intercepts Alice and Bob's public keys A,B over the insecure channel.
Baby Step, Giant Step Method

Eve chooses an integer $6 \geq (27)^{1/2}$ and computes and stores all points jG such that $1 \leq j \leq 6$ in list 1.

<table>
<thead>
<tr>
<th>j</th>
<th>LIST 1</th>
<th>jG</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1(1,19)</td>
<td>(1,19)</td>
</tr>
<tr>
<td>2</td>
<td>2(1,19)</td>
<td>(10,15)</td>
</tr>
<tr>
<td>3</td>
<td>3(1,19)</td>
<td>(21,18)</td>
</tr>
<tr>
<td>4</td>
<td>4(1,19)</td>
<td>(19,21)</td>
</tr>
<tr>
<td>5</td>
<td>5(1,19)</td>
<td>(5,1)</td>
</tr>
<tr>
<td>6</td>
<td>6(1,19)</td>
<td>(20,9)</td>
</tr>
</tbody>
</table>
Baby Step, Giant Step Method

Eve computes \((14,17) - (h6)(1,19)\) for consecutive integers \(h=0,1,2,\ldots,5\) Until \((14,17) - (h6)G = jG\) for an integer \(h\), and an integer \(j\) from the List 1

<table>
<thead>
<tr>
<th>(j)</th>
<th>(jG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1,19)</td>
</tr>
<tr>
<td>2</td>
<td>(10,15)</td>
</tr>
<tr>
<td>3</td>
<td>(21,18)</td>
</tr>
<tr>
<td>4</td>
<td>(19,21)</td>
</tr>
<tr>
<td>5</td>
<td>(5,1)</td>
</tr>
<tr>
<td>6</td>
<td>(20,9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(h)</th>
<th>((14,17) - (h6)(1,19))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(14,17)</td>
</tr>
<tr>
<td>1</td>
<td>(18,8)</td>
</tr>
<tr>
<td>2</td>
<td>(17,7)</td>
</tr>
<tr>
<td>3</td>
<td>(21,18)</td>
</tr>
</tbody>
</table>
Baby Step, Giant Step Method

Eve has recovered Alice’s private key, $k_A \equiv (3+3*6) \equiv 21 \pmod{27}$

$(23, 17, 21, (1,19), 27)$
Let’s Put Things in Perspective

Windows DRM:

785963102379428822376694789446897396207498568951

(≈7.86x10^{47})

8.865x10^{23} steps/storage

NSA Recommends:

Primes larger than 2^{255} ≈ 5.79x10^{79}
ECC Advantages

<table>
<thead>
<tr>
<th>Security (Bits)</th>
<th>Symmetric encryption algorithm</th>
<th>Minimum Size (Bits) of Public Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>Skipjack</td>
<td>DSA/ DH</td>
</tr>
<tr>
<td>112</td>
<td>3DES</td>
<td>2048</td>
</tr>
<tr>
<td>128</td>
<td>AES-128</td>
<td>3072</td>
</tr>
<tr>
<td>192</td>
<td>AES-192</td>
<td>7680</td>
</tr>
<tr>
<td>256</td>
<td>AES-256</td>
<td>15360</td>
</tr>
</tbody>
</table>

http://www.design-reuse.com/articles/7409/ecc-holds-key-to-next-gen-cryptography.html
“Elliptic Curve Cryptography provides greater security and more efficient performance than the first generation public key techniques (RSA and Diffie-Hellman) now in use. As vendors look to upgrade their systems they should seriously consider the elliptic curve alternative for the computational and bandwidth advantages they offer at comparable security.”